返回上一级
返回页面
返回上一页 菜单 搜索

一元二次方程求根公式推导过程

学大教育
来源:学大教育

2020-12-21 17:53:35 | 阅读:219

进入 >

一元二次方程求根公式是数学中的一个重要知识点,下面总结了一元二次方程求根公式推导过程,供大家参考。

一元二次方程求根公式推导过程

一元二次方程求根公式推导过程

一元二次方程的根公式是由配方法推导来的,那么由ax^2+bx+c(一元二次方程的基本形式)推导根公式的详细过程如下,

1、ax^2+bx+c=0(a≠0,^2表示平方),等式两边都除以a,得x^2+bx/a+c/a=0,

2、移项得x^2+bx/a=-c/a,方程两边都加上一次项系数b/a的一半的平方,即方程两边都加上b^2/4a^2,

3、配方得x^2+bx/a+b^2/4a^2=b^2/4a^2-c/a,即(x+b/2a)^2=(b^2-4ac)/4a,

4、开根后得x+b/2a=±[√(b^2-4ac)]/2a(√表示根号),比较终可得x=[-b±√(b^2-4ac)]/2a。

一元二次方程

只含有一个未知数(一元),并且未知数项的比较高次数是2(二次)的整式方程叫做一元二次方程。

一元二次方程经过整理都可化成一般形式ax2+bx+c=0(a≠0).其中ax2叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。

一元二次方程求根公式

当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a

当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a

只含有一个未知数,并且未知数项的比较高次数是2的整式方程叫做一元二次方程。它的标准形式为:ax2+bx+c=0(a≠0)其中ax2叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。

编辑:陆林
温馨提示:免费领取0元试听课!满意在报名!
中小学辅导
查看更多 >
猜你喜欢
查看更多 >