返回上一级
返回页面
返回上一页 菜单 搜索

角平分线的性质及证明方法

学大教育
来源:学大教育

2020-09-18 11:51:21 | 阅读:183

进入 >

角平分线的性质:三角形的三条角平分线交于一点,且到各边的距离相等.这个点称为内心 (即以此点为圆心能够在三角形内部画一个内切圆)。三角形内角平分线分对边所得的两条线段和这个角的两边对应成比例。

角平分线性质证明

在三角形中的性质。

1.三角形的三条角平分线交于一点,且到各边的距离相等.这个点称为内心 (即以此点为圆心能够在三角形内部画一个内切圆)。

2.三角形内角平分线分对边所得的两条线段和这个角的两边对应成比例。

如图,若AD是△ABC的角平分线,则 BD/DC=AB/AC。

证明:作CE∥AD交BA延长线于E。

∵CE∥AD

∴△BDA∽△BCE

∴BA/BE=BD/BC

∴ BA/AE=BD/DC

∵CE∥AD

∴∠BAD=∠E,∠DAC=∠ACE

∵AD平分∠BAC

∴∠BAD=∠CAD

∴ ∠BAD=∠CAD=∠ACE=∠E

即∠ACE=∠E

∴ AE=AC

又∵BA/AE=BD/DC

∴BA/AC=BD/DC

怎么做一个角的角平分线

尺规作图做一个角的角平分线按照以下步骤:

1、先在纸上画一个角∠AOB,这个角是作为要被平分的角。

2、以任意长度为半径,顶点为圆心画圆弧,交角两边于C、D。

3、然后以C为圆心,大于CD/2长度为半径用圆规画圆弧。

4、接着以D为圆心,同3步骤一样以长度为半径用圆规画圆弧。

5、比较后两圆弧交于E点。

6、连接顶点O和E,OE即为角平分线。

角平分线的性质及证明方法乐乐就先为大家讲解到这里了,希望可以帮到你些,若还有更多疑问,可以点击右下角咨询哦!学习是快乐的,学习是幸福的,虽然在学习的道路上我们会遇到许多困难,但是只要努力解决这些困难后,你将会感觉到无比的轻松与快乐,所以我想让大家和我一起进入学习的海洋中,去共同享受快乐。

编辑:乐乐
温馨提示:免费领取0元试听课!满意在报名!
中小学辅导
查看更多 >
猜你喜欢
查看更多 >