2020-09-18 16:24:24 | 阅读:145
对于数学的学习来说,有哪些关键的知识要点,需要我们掌握呢?下边小编整理了一些相关信息,供大伙参考!
函数与导数。主要考查集合运算、函数的有关定义概念域、值域、解析式、函数的极限、连续、导数。
平面向量与三角函数、三角变换及其应用。这一部分是高考的但不是难点,主要出一些基础题或中档题。
数列及其应用。这部分是高考的而且是难点,主要出一些综合题。
不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的和难点。
概率和统计。这部分和我们的生活联系比较大,属应用题。
空间位置关系的定性与定量分析。主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。
解析几何。高考的难点,运算量大,一般含参数。
高考对数学基础知识的考查,既全面又突出,扎实的数学基础是成功解题的重要。
掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
知道随机事件的发生存在着规律性和随机事件概率的意义。
知道等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
知道互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
会计算事件在n次独立重复试验中恰好发生k次的概率。
一.集合与函数
1.开展集合的交、并、补运算时,不要忘了全集和空集的特殊状况,不要忘记了借助数轴和文氏图开展求解.
2.在应用条件时,易A忽略是空集的状况
3.你会用补集的思想解决有关问题吗?
4.简单与复合有什么区别?四种之间的相互关系是什么?怎么判断充分与必要条件?
5.你了解“否”与“的否定形式”的区别.
6.求解与函数有关的问题易忽略概念域优先的原则.
7.判断函数奇偶性时,易忽略检验函数概念域是否关于原点对称.
8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的概念域.
9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.比如:.
10.你熟练地掌握了函数单调性的证明办法吗?概念法(取值,作差,判正负)和导数法
11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.
12.求函数的值域必须先求函数的概念域。
13.怎么应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?
14.解对数函数问题时,你注意到真数与底数的限制条件了吗?
(真数大于零,底数大于零且不等于1)字母底数还需讨论
15.三个二次(哪三个二次?)的关系及应用掌握了吗?怎么采用二次函数求比较值?
16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?
二.不等式
18.采用均值不等式求比较值时,你是否注意到:“一正;二定;三等”.
19.值不等式的解法及其几何意义是什么?
20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?
21.解含参数不等式的通法是“概念域为前提,函数的单调性为基础,分类讨论是重要”,注意解完之后要写上:“综上,原不等式的解集是……”.
22.在求不等式的解集、概念域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.
23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;另外要注意“同号可倒”即a>b>0,a<0.<
三.数列
24.解决一些等比数列的前项和问题,你注意到要对公比及两种状况开展讨论了吗?
25.在“已知,求”的问题中,你在采用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
26.你了解存在的条件吗?(你理解数列、有穷数列、无穷数列的定义吗?你了解无穷数列的前项和与全部项的和的不同吗?什么样的无穷等比数列的全部项的和必定存在?
27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其概念域中的值不是连续的。)
28.应用数学总结法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学办法用来证明时也成立。
四.三角函数
29.正角、负角、零角、象限角的定义你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你了解锐角与首要象限的角;终边相同的角和相等的角的区别吗?
30.三角函数的概念及单位圆内的三角函数线(正弦线、余弦线、正切线)的概念你了解吗?
31.在解三角问题时,你注意到正切函数、余切函数的概念域了吗?你注意到正弦函数、余弦函数的有界性了吗?
32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)
33.反正弦、反余弦、反正切函数的取值范围分别是
34.你还记得某些特殊角的三角函数值吗?
35.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象能够由函数经过怎样的变换获得吗?
36.函数的图象的平移,方程的平移以及点的平移公式易混:
(1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位获得的图象的解析式为,即.
(2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位获得的图象的解析式为,即.
(3)点的平移公式:点按向量平移到点,则.
37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)
38.形如的周期都是,但的周期为。
39.正弦定理时易忘比值还等于2R.
五.平面向量
40.数0有区别,的模为数0,它不是没有方向,而是方向不定。能够看成与任意向量平行,但与任意向量都不垂直。
41.数量积与两个实数乘积的区别:
在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出.
已知实数,且,则a=c,但在向量的数量积中没有.
在实数中有,可是在向量的数量积中,这是由于左边是与共线的向量,而右边是与共线的向量.
42.是向量与平行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。
六.解析几何
43.在用点斜式、斜截式求直线的方程时,你是否注意到不存在的状况?
44.用到角公式时,易将直线l1、l2的斜率k1、k2的顺序弄颠倒。
45.直线的倾斜角、到的角、与的夹角的取值范围依次是。
46.定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在采用定比分点解题时,你注意到了吗?
47.对不重合的两条直线
(建议在解题时,讨论后采用斜率和截距)
48.直线在两坐标轴上的截距相等,直线方程能够理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。
49.解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达.(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列平行线,找到并求出较优解⑦应用题一定要有答。)
50.三种圆锥曲线的概念、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?
51.圆、和椭圆的参数方程是怎样的?常用参数方程的办法解决哪一些问题?
52.采用圆锥曲线第二概念解题时,你是否注意到概念中的定比前后项的顺序?怎么采用第二概念推出圆锥曲线的焦半径公式?怎么应用焦半径公式?
53.通径是抛物线的全部焦点弦中比较短的弦.(想一想在双曲线中的结论?)
54.在用圆锥曲线与直线联立求解时,消元后获得的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制.(求交点,弦长,中点,斜率,对称,存在性问题都在下开展).
55.解析几何问题的求解中,平面几何知识采用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系?
七.立体几何
56.你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。
57.线面平行和面面平行的概念、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?
58.三垂线定理及其逆定理你记牢了吗?你了解三垂线定理的重要是什么吗?(一面、四线、三垂直、立柱即面的垂线是重要)一面四直线,立柱是重要,垂直三处见
59.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大.
60.求两条异面直线所成的角、直线与平面所成的角和二面角时,假如所求的角为90°,那么就不要忘了还有一种求角的办法即用证明它们垂直的办法.
61.异面直线所成角采用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告知异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种状况都有可能。
62.你了解公式:和中每一字母的意思吗?可以熟练地应用它们解题吗?
63.两条异面直线所成的角的范围:0°<α≤90°
直线与平面所成的角的范围:0o≤α≤90°
二面角的平面角的取值范围:0°≤α≤180°
64.你了解异面直线上两点间的距离公式怎么运用吗?
65.平面图形的翻折,立体图形的展开等一类问题,要注意翻折,展开前后有关几何元素的“不变量”与“不变性”。
66.立几问题的求解分为“作”,“证”,“算”三个环节,你是否只注重了“作”,“算”,而忽视了“证”这一关键环节?
67.棱柱及其性质、平行六面体与长方体及其性质.这些知识你掌握了吗?(注意运用向量的办法解题)
68.球及其性质;经纬度概念易混.经度为二面角,纬度为线面角、球面距离的求法;球的表面积和体积公式.这些知识你掌握了吗?
八.排列、组合和概率
69.解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合.
解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法.
70.二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。二项式系数比较大项与展开式中系数比较大项易混.二项式系数比较大项为中间一项或两项;展开式中系数比较大项的求法要用解不等式组来确定r.
71.你掌握了三种常见的概率公式吗?(①等可能事件的概率公式;②互斥事件有一个发生的概率公式;③相互独立事件另外发生的概率公式.)
72.二项式展开式的通项公式、n次独立重复试验中事件A发生k次的概率易记混。
通项公式:它是第r+1项而不是第r项;
事件A发生k次的概率:.其中k=0,1,2,3,…,n,且0<p<1,p+q=1.
73.求分布列的解答题你能把步骤写全吗?
74.怎么对总体分布开展估计?(用样本估计总体,是研究统计问题的一个基本思想办法,一般地,样本容量越大,这种估计就越,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义.)
75.你还记得一般正态总体怎么化为标准正态总体吗?(对任一正态总体来说,取值小于x的概率,其中表示标准正态总体取值小于的概率)
九.导数及其应用
76.在点处可导的概念你还记得吗?它的几何意义和物理意义分别是什么?采用导数可解决哪些问题?详细步骤还记得吗?
77.你会用“在其概念域内可导,且不恒为零,则在某区间上单调递增(减)对恒成立。”解决有关函数的单调性问题吗?
78.你了解“函数在点处可导”是“函数在点处连续”的什么条件吗
好了,关于高中数学知识归纳这个问题学好网迷龙就为大家介绍到这里了,希望对你有所帮助,若还有更多疑问,可以点击右下角咨询哦!我品尝到了学习生活的快乐,快乐味道的甘甜的,是幸福的,是属于我自己的……
学大教育
学大教育
学大教育
学大教育