返回上一级
返回页面
返回上一页 菜单 搜索

上下限定积分求导公式

学大教育
来源:学大教育

2020-09-17 20:51:54 | 阅读:243

进入 >

对有积分上下限函数的求导的公式:[∫(a,c)f(x)dx]'=0,a,c为常数。解释:对于积分上下限为常数的积分函数,其导数=0等。

对有积分上下限函数的求导公式

[∫(a,c)f(x)dx]'=0,a,c为常数。解释:对于积分上下限为常数的积分函数,其导数=0。

[∫(g(x),c)f(x)dx]'=f(g(x))*g'(x),a为常数,g(x)为积分上限函数,解释:积分上限为函数的求导公式=被积函数以积分上限为自变量的函数值乘以积分上限的导数。

[∫(g(x),p(x))f(x)dx]'=f(g(x))*g'(x)-f(p(x))*p'(x),a为常数,g(x)为积分上限函数,p(x)为积分下限函数。解释:积分上下限为函数的求导公式=被积函数以积分上限为自变量的函数值乘以积分上限的导数-被积函数以积分下限为自变量的函数值乘以积分下限的导数。

什么是积分变限函数

所谓“积分变限函数”便是用定积分概念的函数,其中自变量出现在积分的上限或下限。

在讲牛顿-莱布尼茨定理时,我们用定积分对一个连续函数f(x)函数,概念了一个这样的函数:

因为这个函数的自变量x在积分上限,我们称这样的函数为“积分上限函数”。在微积分里证明了:这个积分上限函数是f(x)的原函数,或者说,f(x)是这个积分上限函数的导数。这个结论直接导致了微积分基本定理:牛顿-莱布尼茨公式。

当然,变量也可能出现在积分下限,甚至上限和下限都能够含有自变量,我们把这类函数统称为“积分变限函数”。

积分变限函数与以前所接触到的全部函数形式都很不一样。首先,它是由定积分来概念的;其次,这个函数的自变量出现在积分上限或下限。

好了,关于上下限定积分求导公式这个问题学好网小天就为大家介绍到这里了,希望对你有所帮助,若还有更多疑问,可以点击右下角咨询哦!本文是学好网整理汇编,请勿转载,以尊重我站编辑人员劳动成果及版权。如有转载,我方将追究法律责任。若有侵权,请联系网站负责人删除。

编辑:小天
温馨提示:免费领取0元试听课!满意在报名!
中小学辅导
查看更多 >
猜你喜欢
查看更多 >