返回上一级
返回页面
返回上一页 菜单 搜索

三角形中线定理和性质

学大教育
来源:学大教育

2020-09-17 18:24:22 | 阅读:222

进入 >

中线定理又称阿波罗尼奥斯定理,是一种欧氏几何的定理,指三角形三边和中线长度关系,三角形一条中线两侧所对边平方和等于底边的一半平方与该边中线平方和的2倍。

三角形中线定理及性质

概念

三角形的中线是连接三角形的一个顶点及其对边中点的线段,一个三角形有3条中线。

性质

设⊿ABC的角A、B、C的对边分别为a、b、c.

1、三角形的三条中线都在三角形内。

2、三角形的三条中线长:ma=(1/2)√2b2+2c2-a2;

mb=(1/2)√2c2+2a2-b2;mc=(1/2)√2a2+2b2-c2。

(ma,mb,mc分别为角A,B,C所对的中线长)

3、三角形的三条中线交于一点,该点叫做三角形的重心。

4、直角三角形斜边上的中线等于斜边的一半。

5.三角形中线组成的三角形面积等于这个三角形面积的3/4.

三角形别的线与性质

概念:从一个顶点向它的对边所在的直线画垂线,顶点和垂足之间的线段。

性质:

(1)锐角三角形:三条高都在三角形的内部。交点也在三角形的内部。

(2)直角三角形:两条别在两条直角边上,另一条高在三角形的内部。交点是直角的顶点。

(3)钝角三角形:钝角的两边上的高在三角形外部。交点在三角形的外部。

角平分线

概念:三角形一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段。

性质:

(1)三角形的三条角平分线交于一点,且到各边的距离相等.这个点称为内心(即以此点为圆心能够在三角形内部画一个内切圆)。

(2)三角形内角平分线分对边所得的两条线段和这个角的两边对应成比例。

中位线

概念:三角形的三边中任意两边中点的连线。

性质:三角形的中位线平行于第三边并且等于第三边边长的一半。

好了,关于三角形中线定理和性质这个问题学好网小兵就为大家介绍到这里了,希望对你有所帮助,若还有更多疑问,可以点击右下角咨询哦!学习,就要有灵魂,有精神和有热情,它们支持着你的全部!灵魂,认识到自我存在,认识到你该做的是什么;精神,让你不倒下,让你坚强,让你不畏困难强敌;热情,就是时刻提醒你,终点就在不远方,只要努力便会成功的声音,他是灵魂与精神的养料,它是力量的源泉。

编辑:小兵
温馨提示:免费领取0元试听课!满意在报名!
中小学辅导
查看更多 >
猜你喜欢
查看更多 >