2020-09-11 10:50:45 | 阅读:230
地理对于文科生来说算是文科中理科一般的存在,那是不是有什么简单易懂的技巧来帮助文科生们学好地理呢,地理中已知两点经纬度求距离难到了许多同学,下边小编为大伙整理了相关信息,以供参考。
设地球半径为R,地心为0,球面上两点A、B的球面坐标为A(α1,β1),B(α2,β2),α1、α2∈[-π,π],β1、β2∈[-π/2,π/2 ],则AB =R?arccos[cosβ1cosβ2cos(α1-α2)+sinβ1sinβ2],能够采用勾股定理与正弦定理则可求出AB两点间的直线距离。
一般来说,同一经线上,纬度相差一度,距离相差111KM;同一纬线上,经度相差一度,距离相差111KM乘以cos该纬度数.赤道上,经度相差一度,距离相差111KM;不在同一纬线或同一经线上的就另当别论,详细问题详细分析。
球是一个近乎标准的椭球体,它的赤道半径为6378.140千米,极半径为 6356.755千米,平均半径6371.004千米。假如我们假设地球是一个好的球体,那么它的半径便是地球的平均半径,记为R。假如以0度经线为基 准,那么通过地球表面任意两点的经纬度就能够计算出这两点间的地表距离(这里忽略地球表面地形对计算带来的误差,仅仅是理论上的估算值)。设首要点A的经 纬度为(LonA, LatA),第二点B的经纬度为(LonB, LatB),按照0度经线的基准,东经取经度的正值(Longitude),西经取经度负值(-Longitude),北纬取90-纬度值(90- Latitude),南纬取90+纬度值(90+Latitude),则经过以上处理过后的两点被计为(MLonA, MLatA)和(MLonB, MLatB)。那么通过三角推导,能够获得计算两点距离的如下公式:
C=sin(MLatA)*sin(MLatB)*cos(MLonA-MLonB)+cos(MLatA)*cos(MLatB)
Distance=R*Arccos(C)*Pi/180
这里,R和Distance单位是相同,假如是利用6371.004千米作为半径,那么Distance便是千米为单位,假如要使用别的单位,例如mile,还需要做单位换算,1千米=0.621371192mile,假如仅对经度作正负的处理,而不对纬度作90-Latitude(假设都是北半球,南半球只有澳洲具有应用意义)的处理,那么公式将是:
C=sin(LatA)*sin(LatB)+cos(LatA)*cos(LatB)*cos(MLonA-MLonB)
Distance=R*Arccos(C)*Pi/180
上述根据简单的三角变换就能够推出。
假如三角函数的输入和输出都利用弧度值,那么公式还能够写作:
C=sin(LatA*Pi/180)*sin(LatB*Pi/180)+cos(LatA*Pi/180)*cos(LatB*Pi/180)*cos((MLonA-MLonB)*Pi/180)
Distance=R*Arccos(C)*Pi/180
也便是:
C=sin(LatA/57.2958)*sin(LatB/57.2958)+cos(LatA/57.2958)*cos(LatB/57.2958)*cos((MLonA-MLonB)/57.2958)
Distance=R*Arccos(C)=6371.004*Arccos(C) kilometer=0.621371192*6371.004*Arccos(C)mile=3958.758349716768*Arccos(C) mile
地理中已知两点经纬度求距离怎么算布尔就先为大家讲解到这里了,希望可以帮到你些,若还有更多疑问,可以点击右下角咨询哦!学习是快乐的,学习是幸福的,虽然在学习的道路上我们会遇到许多困难,但是只要努力解决这些困难后,你将会感觉到无比的轻松与快乐,所以我想让大家和我一起进入学习的海洋中,去共同享受快乐。
学大教育
学大教育
学大教育
学大教育