一元三次方程解法有、因式分解法、一种换元法、卡尔丹公式法等多种方法,本篇我们将详细介绍其内容。
因式分解法不是对所有的三次方程都适用,只对一些简单的三次方程适用.对于大多数的三次方程,只有先求出它的根,才能作因式分解。当然,对一些简单的三次方程能用因式分解求解的,当然用因式分解法求解很方便,直接把三次方程降次。
例如:解方程x^3-x=0
对左边作因式分解,得x(x+1)(x-1)=0,得方程的三个根:x1=0;x2=1;x3=-1。
对于一般形式的三次方程,先将方程化为x^3+px+q=0的特殊型。
令x=z-p/3z,代入并化简,得:z^3-p/27z+q=0。再令z^3=w,代入,得:w^2-p/27w+q=0.这实际上是关于w的二次方程。解出w,再顺次解出z,x。
特殊型一元三次方程X^3+pX+q=0 (p、q∈R)。
判别式Δ=(q/2)^2+(p/3)^3。
卡尔丹公式
X1=(Y1)^(1/3)+(Y2)^(1/3);
X2= (Y1)^(1/3)ω+(Y2)^(1/3)ω^2;
X3=(Y1)^(1/3)ω^2+(Y2)^(1/3)ω,
其中ω=(-1+i3^(1/2))/2;
Y(1,2)=-(q/2)±((q/2)^2+(p/3)^3)^(1/2)。
标准型一元三次方程aX ^3+bX ^2+cX+d=0,(a,b,c,d∈R,且a≠0)。
令X=Y—b/(3a)代入上式。
可化为适合卡尔丹公式直接求解的特殊型一元三次方程Y^3+pY+q=0。
通用求根公式
当一元三次方程ax
好了,关于一元三次方程解法有哪些这个问题学好网老A就为大家介绍到这里了,希望对你有所帮助,若还有更多疑问,可以点击右下角咨询哦!本文是学好网整理汇编,请勿转载,以尊重我站编辑人员劳动成果及版权。如有转载,我方将追究法律责任。若有侵权,请联系网站负责人删除。