返回上一级
返回页面
返回上一页 菜单 搜索

河南专升本高等数学考试重要知识点

现代华西教育
来源:现代华西教育

2021-08-05 18:24:06 | 阅读:169

进入 >

2021年河南专升本考试已经结束,为了帮助2022年参加河南专升本考试的考生能取得一个优异成绩,下面库课李老师给考生整理了河南专升本高等数学考试重要知识点,请考生认真查看。

首要章、函数、极限和连续

考点一:求函数的定义域

考点二:判断函数是否为同一函数

考点三:求复合函数的函数值或复合函数的外层函数

考点四:确定函数的奇偶性、有界性等性质的问题

考点五:有关反函数的问题

考点六:有关极限概念及性质、法则的题目

考点七:简单函数求极限或极限的反问题

考点八:无穷小量问题

考点九:分段函数求待定常数或讨论分段函数的连续性

考点十:指出函数间断点的类型

考点十一:利用零点定理确定方程根的存在性或证明含有 的等式

考点十二:求复杂函数的极限

  第二章、导数与微分

考点一:利用导数定义求导数或极限

考点二:简单函数求导数

考点三:参数方程确定函数的导数

考点四:隐函数求导数

考点五:复杂函数求导数

考点六:求函数的高阶导数

考点七:求曲线的切线或法线方程或斜率问题

考点八:求各种函数的微分

  第三章、导数的应用

考点一:指出函数在给定区间上是否满足罗尔定理、拉格朗日定理或 满足定理求定理中 的值

考点二:利用罗尔定理证明方程根的存在性或含有 的等式

考点三:利用拉格朗日定理证明连体不等式

考点四:洛必达法则求极限

考点五:求函数的极值或极值点

考点六:利用函数单调性证明单体不等式

考点七:利用函数单调性证明方程根的仅此性

考点八:求曲线的凹向区间

考点九:求曲线的拐点坐标

考点十:求曲线某种形式的渐近线

考点十一:一元函数最值得实际应用问题

第四章、不定积分

考点一:涉及原函数与不定积分的关系,不定积分性质的题目

考点二:求不定积分的方法

考点三:求三种特殊函数的不定积分

第五章、定积分

考点一:定积分概念、性质和几何意义等题目

考点二:涉及变上限函数的题目

考点三:求定积分的方

考点四:求几种特殊函数的定积分

考点五:积分等式的证明

考点六:判断广义积分收敛或发散

第六章、定积分的应用

考点:直角坐标系下已知平面图形,求面积及这个平面图形绕坐标走旋转一周得到的旋转体的体积

第七章、向量代数与空间解析几何

考点一:有关向量之间的运算问题

考点二:求空间平面或直线方程

考点三:确定直线与直线,直线与平面,平面与平面的位置关系 ; 或已知位置关系求待定系数

考点四:由方程识别空间曲面或曲线的类型

考点五:写出旋转曲面方程和投影柱面方程

  第八章、多元函数的微分及应用

考点一:求二元函数定义域

考点二:求二元函数的复合函数或求复合函数的外层函数

考点三:求多元函数的极限

考点四:求简单函数的偏导数或某点导数

考点五:求简单函数全微分或高阶偏导数

考点六:复杂函数 ( 特别是含符号 f) 的求偏导数或全微分或高阶导数

考点七:隐函数的求偏导数或全微分

考点八:求空间曲面的切平面或法线方程 ; 求空间曲线的切线和法线方程

考点九:求函数的方向倒数和梯度

考点十:求二元函数的极值或极值点、驻点

考点十一:多元函数有关概念的问题

考点十二:二元函数最值的实际应用问题

第九章、二重积分

考点一:利用二重积分性质和几何意义等基本问题

考点二:直角坐标系下计算二重积分

考点三:直角坐标系下两种累次积分次序互换

考点四:在极坐标系下计算二重积分

考点五:两种坐标系下二重积分互换

  第十章、曲线积分

考点一:计算对弧长的曲线积分

考点二:计算对坐标的曲线积分

第十一章、无穷级数

考点一:有关级数收敛定义和性质的题目

考点二:指出数项级数的收敛、发散、条件收敛、绝对收敛

考点三:确定幂级数在某点处是否收敛或发散

考点四:求幂级数的收敛域或收敛区间

考点五:利用公式把简单函数展开成幂级数

考点六:求数项级数的和或幂级数的和函数

  第十二章、常微分方程

考点一:涉及微分方程有关概念的基本问题

考点二:求可分离变量的微分方程的通解和特解

考点三:涉及可变量微分方程的实际应用问题

考点四:求齐次微分方程的通解或特解

考点五:求一阶线性微分方程通解

考点六:求 通解或特解

考点七:求 通解或特解

考点八:设出 通解或特解

考点九:求 通解或特解高数的复习知识点比较多,逻辑性比较强,大家在复习的时候一定要按照以上老师总结的考点的加以复习备考。

编辑:廖纪超
温馨提示:免费领取0元试听课!满意在报名!
学历提升热点
查看更多 >
猜你喜欢
查看更多 >