返回上一级
返回页面
返回上一页 菜单 搜索

复数是什么意思

学大教育
来源:学大教育

2020-12-22 14:46:00 | 阅读:112

进入 >

我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当z的虚部等于零时,常称z为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。

复数是什么意思

复数的历史

德国数学家阿甘得(1777—1855)在1806年公布了复数的图象表示法,即所有实数能用一条数轴表示,同样,复数也能用一个平面上的点来表示。在直角坐标系中,横轴上取对应实数a的点A,纵轴上取对应实数b的点B,并过这两点引平行于坐标轴的直线,它们的交点C就表示复数 。象这样,由各点都对应复数的平面叫做“复平面”,后来又称“阿甘得平面”。

高斯在1831年,用实数组 代表复数 ,并建立了复数的某些运算,使得复数的某些运算也象实数一样地“代数化”。他又在1832年首要次提出了“复数”这个名词,还将表示平面上同一点的两种不同方法——直角坐标法和极坐标法加以综合。

统一于表示同一复数的代数式和三角式两种形式中,并把数轴上的点与实数一一对应,扩展为平面上的点与复数一一对应。高斯不仅把复数看作平面上的点,而且还看作是一种向量,并利用复数与向量之间一一对应的关系,阐述了复数的几何加法与乘法。至此,复数理论才比较完整和系统地建立起来了。

经过许多数学家长期不懈的努力,深刻探讨并发展了复数理论,才使得在数学领域游荡了200年的幽灵——虚数揭去了神秘的面纱,显现出它的本来面目,原来虚数不“虚”。虚数成为了数系大家庭中一员,从而实数集才到了复数集。

随着科学和技术的进步,复数理论已越来越显出它的重要性,它不但对于数学本身的发展有着极其重要的意义,而且为证明机翼上升力的基本定理起到了重要作用,并在解决堤坝渗水的问题中显示了它的威力,也为建立巨大水电站提供了重要的理论依据。

编辑:浩瀚
温馨提示:免费领取0元试听课!满意在报名!
中小学辅导
查看更多 >
猜你喜欢
查看更多 >