2020-12-21 17:46:11 | 阅读:803
抛物线方程是指抛物线的轨迹方程,是一种用方程来表示抛物线的方法。在几何平面上可以根据抛物线的方程画出抛物线。抛物线在合适的坐标变换下,也可看成二次函数图像。
一般式:ax2+bx+c(a、b、c为常数,a≠0)
顶点式:y=a(X-h)2+k(a、h、k为常数,a≠0)
交点式(两根式):y=a(x-x1)(x-x2)(a≠0)
其中抛物线y=aX2+bX+c(a、b、c为常数,a≠0)与x轴交点坐标,即方程aX2+bX+c=0的两实数根。
右开口抛物线:y^2=2px
左开口抛物线:y^2= -2px
上开口抛物线:x^2=2py y=ax^2(a大于等于0)
下开口抛物线:x^2= -2py y=ax^2(a小于等于0)
[p为焦准距( 0)]
共同点:
①原点在抛物线上,离心率e均为1;
②对称轴为坐标轴;
③准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的值的1/4。
不同点:
①对称轴为x轴时,方程右端为±2px,方程的左端为y^2;对称轴为y轴时,方程的右端为±2py,方程的左端为x^2;
②开口方向与x轴(或y轴)的正半轴相同时,焦点在x轴(y轴)的正半轴上,方程的右端取正号;开口方向与x(或y轴)的负半轴相同时,焦点在x轴(或y轴)的负半轴上,方程的右端取负号。
学大教育
学大教育
学大教育
学大教育