2020-12-17 15:56:28 | 阅读:213
为了方便大家更好的学习初一数学下册的知识,现将初一下册数学重要知识点归纳整理分享给大家,供参考。
1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。
3.原点的坐标是(0,0);
纵坐标相同的点的连线平行于x轴;
横坐标相同的点的连线平行于y轴;
x轴上的点的纵坐标为0,表示为(x,0);
y轴上的点的横坐标为0,表示为(0,y)。
4.建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做首要象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。
5.几个象限内点的特点:
首要象限(+,+);第二象限(—,+);
第三象限(—,—);第四象限(+,—)。
6.(x,y)关于原点对称的点是(—x,—y);
(x,y)关于x轴对称的点是(x,—y);
(x,y)关于y轴对称的点是(—x,y)。
7.点到两轴的距离:点P(x,y)到x轴的距离是︱y︳;
点P(x,y)到y轴的距离是︱x︳。
8.在首要、三象限角平分线上的点的坐标是(m,m);
在第二、四象限叫平分线上的点的坐标是(m,—m)。
1.加法
同号两数相加,取相同的符号,并把值相加;值不相等的异号两数相加,取值较大的加数的符号,并用较大的值减去较小的值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。
2.减法:减去一个数等于加上这个数的相反数。
3.乘法
几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0。
4.除法
除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把值相除.0除以任何一个不等于0的数都得0。
5.乘方与开方
(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数。
(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方。
(3)零指数与负指数。
用直方图描述数据的步骤(即做直方图的步骤)
1.计算比较大值与比较小值的差。
2.决定组距与组数
原则:当数据在100个以内时,按照数据的多少,分成5~12组。
组距:把所有的数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)。
3.列频数分布表
频数:各小组内数据的个数称为频数。
4.画频数分布直方图。
5.小长方形的面积表示频数。纵轴为。等距分组时,通常直接用小长方形的高表示频数,即纵轴为“频数”。
6.频数分布折线图。根据频数分布图画出频数分布折线图:
①取每个小长方形的上边的中点,以及x轴上与比较左、比较右直方相距半个组距的点。②连线。
1.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
2.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的比较高次数是1,像这样的不等式,叫做一元一次不等式。
3.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
4.一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
5.不等式的性质:
不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
学大教育
学大教育
学大教育
学大教育