返回上一级
返回页面
返回上一页 菜单 搜索

八年级下册数学知识点总结归纳

学大教育
来源:学大教育

2020-12-17 14:05:21 | 阅读:152

进入 >

八年级数学下册主要有分式、二次根式、轴对称、函数等重要章节,小编整理了一些重要知识点。

八年级下册数学知识点

分式

一、分式的概念

1、分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。

2、对于分式概念的理解,应把握以下几点:

(1)分式是两个整式相除的商。其中分子是被除式,分母是除式,分数线起除号和括号的作用;

(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;

(3)分母不能为零。

3、分式有意义、无意义的条件

(1)分式有意义的条件:分式的分母不等于0;

(2)分式无意义的条件:分式的分母等于0。

二、分式的基本性质

1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。

通分的关键是:确定几个分式的比较简公分母。确定比较简公分母的一般方法是:

(1)如果各分母都是单项式,那么比较简公分母就是各系数的比较小公倍数、相同字母的比较高次幂、所有不同字母及指数的积。

(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求比较简公分母的方法,从系数、相同因式、不同因式三个方面去确定。

3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

在约分时要注意:

(1)如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,即约去分子、分母系数的比较大公约数,相同字母的比较低次幂;

(2)如果分子、分母中至少有一个多项式就应先分解因式,然后找出它们的公因式再约分;

(3)约分一定要把公因式约完。

二次根式

一般地,式子√a,(a≥0)叫做二次根式。

注意:(1)若a<0这个条件不成立,则 a不是二次根式;(2)a是一个重要的非负数,即a ≥0。

1、二次根式的乘法法则:√a X√b=√ab

2、二次根式比较大小的方法

(1)利用近似值比大小;

(2)把二次根式的系数移入二次根号内,然后比大小;

(3)分别平方,然后比大小。

3、二次根式的除法法则:

(1)商的算术平方根等于被除式的算术平方根除以除式的算术。

(2)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。

4、比较简二次根式

(1)满足下列两个条件的二次根式,叫做比较简二次根式。

① 被开方数的因数是整数,因式是整式;② 被开方数中不含能开的尽的因数或因式。

(2)比较简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母。

(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式。

(4)二次根式计算的比较后结果必须化为比较简二次根式。

轴对称

1、如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。这条直线就是它的对称轴。我们也说这个图形关于这条直线成轴对称。

2、把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。这条直线叫做对称轴,折叠后重合的点是对应点,叫做对应点。

3、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

函数及其图象

一、一次函数

如果函数的关系式都是用自变量的一次整式表示的,我们称它们为一次函数,一次函数通常可以表示为y=kx+b的形式,其中k,b为常数且k≠0。形如y=kx(常数k≠0)的函数叫做正比例函数,它是特殊的一次函数。

1、一次函数的图象

(1)一次函数y=kx+b(k≠0)的图象是一条直线。特别地,当b=0时,该函数图象经过原点。

(2)当k>0,b>0时,直线y=kx+b经过首要、二、三象限;

八年级下册数学知识点

当k>0,b<0时,直线y=kx+b经过首要、三、四象限;

八年级下册数学知识点

当k<0,b<0时,直线y=kx+b经过首要、二、四象限;

八年级下册数学知识点

当k<0,b<0时,直线y=kx+b经过第二、三、四象限;

八年级下册数学知识点

2、一次函数的性质

一次函数y=kx+b(k≠0)中,当k>0时,y随x的增大而增大;当k<0时,y随着x的增大而减小。

3、求一次函数的表达式

(1)先设待求函数表达式,再根据条件列出方程或方程组,求出待定系数,从而得到所求结果的方法,叫做待定系数法。

(2)用待定系数法求一次函数的解析式:可以先设出一次函数解析式为y=kx+b(k≠0),然后利用题中给出的两个条件,代入所设的解析式。列出关于k、b的二元一次方程组,求出k,b的值即可。

二、反比例函数

一般地,形如(k是常数,k≠0)的函数叫做反比例函数,自变量x的取值范围是x≠0,函数值y的取值范围是y≠0。

1、反比例函数的图象:双曲线

2、反比例函数的性质:对于反比例函数,当k>0时,图象在一、三象限,在每隔象限内,y随着x的增大而减小;当k<0时,图象在第二、四象限,在每个象限内,y随着x的增大而增大。

以上是小编整理的八年级下册数学知识点,希望能帮到你。

编辑:小梦
温馨提示:免费领取0元试听课!满意在报名!
中小学辅导
查看更多 >
猜你喜欢
查看更多 >