2020-09-18 18:51:30 | 阅读:176
定积分的性质:性质1:设a与b均为常数,则∫a->b[a×f(x)+b×g(x)]dx=a×∫(a->b)f(x)dx+b×∫(a->b)g(x)dx。性质2:假如在区间【a,b】上f(x)恒等于1,那么∫(a->b)1dx=∫(a->b)dx=b-a。
性质1:设a与b均为常数,则∫(a->b)[a*f(x)+b*g(x)]dx=a*∫(a->b)f(x)dx+b*∫(a->b)g(x)dx。
性质2:设a<c<b,则∫(a->b)f(x)dx=∫(a->c)f(x)dx+f(c->b)f(x)dx。
性质3:假如在区间【a,b】上f(x)恒等于1,那么∫(a->b)1dx=∫(a->b)dx=b-a。
性质4:假如在区间【a,b】上f(X)>=0,那么∫(a->b)f(x)dx>=0(a<b)。
性质5:设M及m分别是函数f(x)在区间【a,b】上的比较大值和比较小值,则m(b-a)<=∫(a->b)f(x)dx<=M(b-a)(a<b)。
性质6(定积分中值定理):假如函数f(x)在积分区间【a,b】上连续,那么在【a,b】上至少存在一个点c,使得∫(a->b)f(x)dx=f(c)(b-a)(a<=c<=b)成立。
性质7:若a>b则∫_a^bf(x)=-∫_b^af(x)。
定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。
一个函数,能够存在不定积分,而不存在定积分;也能够存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
好了,关于定积分的性质这个问题学好网小兵就为大家介绍到这里了,希望对你有所帮助,若还有更多疑问,可以点击右下角咨询哦!学习,就要有灵魂,有精神和有热情,它们支持着你的全部!灵魂,认识到自我存在,认识到你该做的是什么;精神,让你不倒下,让你坚强,让你不畏困难强敌;热情,就是时刻提醒你,终点就在不远方,只要努力便会成功的声音,他是灵魂与精神的养料,它是力量的源泉。
学大教育
学大教育
学大教育
学大教育