2020-09-18 18:26:40 | 阅读:179
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。数列求和对按照一定规律排列的数开展求和,那么,等差数列求和公式有哪些呢?下边和小编一起来看看吧!
公式:
Sn=n(a1+an)/2
Sn=na1+n(n-1)d/2=dn^2/2+(a1-d/2)n
等差数列基本公式:
末项=首项+(项数-1)×公差
项数=(末项-首项)÷公差+1
首项=末项-(项数-1)×公差
和=(首项+末项)×项数÷2
末项:比较后一位数
首项:首要位数
项数:一共有几位数
和:求一共数的总和
推论:
(1)从通项公式能够看出,a(n)是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由前n项和公式知,S(n)是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。
(2)从等差数列的概念、通项公式,前n项和公式还可推出:a(1)+a(n)=a(2)+a(n-1)=a(3)+a(n-2)=…=a(k)+a(n-k+1),(类似:p(1)+p(n)=p(2)+p(n-1)=p(3)+p(n-2)=。。。=p(k)+p(n-k+1)),k∈{1,2,…,n}。
(3)若m,n,p,q∈N*,且m+n=p+q,则有a(m)+a(n)=a(p)+a(q),S(2n-1)=(2n-1)*a(n),S(2n+1)=(2n+1)*a(n+1),S(k),S(2k)-S(k),S(3k)-S(2k),…,S(n)*k-S(n-1)*k…成等差数列,等等。若m+n=2p,则a(m)+a(n)=2*a(p)。
证明:p(m)+p(n)=b(0)+b(1)*m+b(0)+b(1)*n=2*b(0)+b(1)*(m+n);p(p)+p(q)=b(0)+b(1)*p+b(0)+b(1)*q=2*b(0)+b(1)*(p+q);由于m+n=p+q,因此p(m)+p(n)=p(p)+p。
分组求和:把一个数列分成几个能够直接求和的数列.
拆项相消:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项再求和.
错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.
倒序相加:比如,等差数列前n项和公式的推导.
等差数列求和公式有哪些 推导方法有几种团长就先为大家讲解到这里了,希望可以帮到你些,若还有更多疑问,可以点击右下角咨询哦!学习是快乐的,学习是幸福的,虽然在学习的道路上我们会遇到许多困难,但是只要努力解决这些困难后,你将会感觉到无比的轻松与快乐,所以我想让大家和我一起进入学习的海洋中,去共同享受快乐。
学大教育
学大教育
学大教育
学大教育