2020-09-18 18:12:39 | 阅读:122
导数产生的几何背景即是研究曲线的切线问题,所以导数的几何意义就是与切线相关的问题。函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率函数在某点处的导数的几何意义是曲线在该点处切线的斜率)。
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。假如函数的自变量和取值都是实数的话,函数在某一点的导数便是该函数所代表的曲线在这一点上的切线斜率。导数的本质是根据极限的定义对函数开展局部的线性逼近。比如在运动学中,物体的位移对于时间的导数便是物体的瞬时速度。不是全部的函数都有导数,一个函数也不一定在全部的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
导数的几何意义解析及相关试题小兵就先为大家讲解到这里了,希望可以帮到你些,若还有更多疑问,可以点击右下角咨询哦!学习就要掌握技巧,也不是死学要与世界上的万物联系在一起,古人说的好活到老学到老,学习是无止境的。多观察、多吃苦、多研究学识是不断深化人的精神,三字经说过“自不教父之过教不严师之惰”看来我国在很久以前就非常注意教育,教育是一个国家是一个国家民族进步的标准,人是在失败中长大,每一个名人背后都有不为人知的故事寒窗苦的读圣贤书,既然我们没在哪社会而感到高兴,既然古人为我们创造知识何必不去珍惜古人的汗水。
学大教育
学大教育
学大教育
学大教育