返回上一级
返回页面
返回上一页 菜单 搜索

数学比较奇葩的九个定理

学大教育
来源:学大教育

2020-09-18 06:21:22 | 阅读:272

进入 >

许多人都觉得数学是枯燥的,但实际上在数学里,也是有许多奇葩的数学定理。下边小编整理了数学中奇葩的九个定理,供大伙参考!

定理1:喝醉的酒鬼总能找到回家的路,喝醉的小鸟则可能永远也回不了家。

假设有一条水平直线,从某个位置出发,每次有 50% 的概率向左走1米,有50%的概率向右走1米。按照这种方式无限地随机游走下去,比较终能回到出发点的概率是多少?答案是100% 。在一维随机游走过程中,只要时间足够长,我们比较终总能回到出发点。

现在考虑一个喝醉的酒鬼,他在街道上随机游走。假设整个城市的街道呈网格状分布,酒鬼每走到一个十字路口,都会概率均等地选择一条路(包括自身来时的那条路)继续走下去。那么他比较终可以回到出发点的概率是多少呢?答案也还是 100% 。

刚开始,这个醉鬼可能会越走越远,但比较后他总能找到回家路。

不过,醉酒的小鸟就没有这么幸运了。如果一只小鸟飞行时,每次都从上、下、左、右、前、后中概率均等地选择一个方向,那么它很有可能永远也回不到 出发点了。事实上,在三维网格中随机游走,比较终能回到出发点的概率只有大约 34% 。

这个定理是数学家波利亚(George Pólya)在 1921 年证明的。随着维度的增加,回到出发点的概率将变得愈来愈低。在四维网格中随机游走,比较终能回到出发点的概率是 19.3% ,而在八维空间中,这个概率只有 7.3% 。

定理2:把一张当地的地图平铺在地上,则总能在地图上找到一点,这个点下边的地上的点正好便是它在地图上所表示的位置。

也便是说,假如在商场的地板上画了一张整个商场的地图,那么你总能在地图上地作一个“你在这里”的标记。

1912 年,荷兰数学家布劳威尔(Luitzen Brouwer)证明了这么一个定理:假设 D 是某个圆盘中的点集,f 是一个从 D 到它自己的连续函数,则一定有一个点 x ,使得 f(x) = x 。换句话说,让一个圆盘里的全部点做连续的运动,则总有一个点能够正好回到运动之前的位置。这个定理叫做布劳威尔不动点定理(Brouwer fixed point theorem)。

除了上面的“地图定理”,布劳威尔不动点定理还有许多别的奇妙的推论。假如取两张大小相同的纸,把其中一张纸揉成一团之后放到另一张纸上,通过布劳威尔不动点定理,纸团上一定 存在一点,它正好位于下边那张纸的同一个点的正上方。

这个定理也能够扩展到三维空间中去:当你搅拌完咖啡后,一定能在咖啡中找到一个点,它在搅拌前后的位置相同(虽然这个点在搅拌过程中可 能到过其他地区)。

定理3:你永远不能理顺椰子上的毛。

想象一个表面长满毛的球体,你能把全部的毛所有梳平,不留下任何像鸡冠一样的一撮毛或者像头发一样的旋吗?拓扑学告知你,这是办不到的。这叫做毛球定理(hairy ball theorem),它也是由布劳威尔首先证明的。

用数学语言来说便是,在一个球体表面,不可能存在连续的单位向量场。这个定理能够推广到更高维的空间:对于任意一个偶数维的球面,连续的单位向量场都是不存在的。

毛球定理在气象学上有一个有趣的应用:因为地球表面的风速和风向都是连续的,所以由毛球定理,地球上总会有一个风速为 0 的地区,也便是说气旋和风眼是不可避免的。

定理4:在任意时刻,地球上总存在对称的两点,他们的温度和大气压的值正好都相同。

波兰数学家乌拉姆(Stanis?aw Marcin Ulam)曾经猜想,任意给定一个从 n 维球面到 n 维空间的连续函数,总能在球面上找到两个与球心相对称的点,他们的函数值是相同的。1933 年,波兰数学家博苏克(Karol Borsuk)证明了这个猜想,这便是拓扑学中的博苏克-乌拉姆定理(Borsuk–Ulam theorem)。

博苏克-乌拉姆定理有许多推论,其中一个推论便是,在地球上总存在对称的两点,他们的温度和大气压的值正好都相同(假设地球表面各地的温度差异和大气压差异是连续变化的)。这是由于,我们能够把温度值和大气压值全部可能的组合看成平面直角坐标系上的点,于是地球表面各点的温度和大气压变化状况就能够看作是二维球面到二维平面的函数,由博苏克-乌拉姆定理便可推出,一定存在两个函数值相等的对称点。

当 n = 1 时,博苏克-乌拉姆定理则能够表述为,在任一时刻,地球的赤道上总存在温度相等的两个点。

对于这个弱化版的推论,我们有一个非常直观的证明办法:假设赤道上有 A、B 两个人,他们站在关于球心对称的位置上。假如此时他们所在地区的温度相同,问题就已经解决了。下边我们要考虑他们所在地点的温度一高一低的状况。不妨假设,A 所在的地区是 10 度,B 所在的地区是 20 度吧。现在,让两人以相同的速度相同的方向沿着赤道旅行,保持两人始终在对称的位置上。假设在此过程中,各地的温度均不变。旅行过程中,两人不断报出自身 当地的温度。等到两人都环行赤道半周后,A 就到了原来 B 的位置,B 也到了 A 刚开始时的位置。在整个旅行过程中,A 所报的温度从 10 开始连续变化(有可能上下波动甚至超出 10 到 20 的范围),比较终变成了 20;而 B 经历的温度则从 20 出发,比较终连续变化到了 10。那么,他们所报的温度值在中间一定有“相交”的一刻,这样一来我们也就找到了赤道上两个温度相等的对称点。

定理5:任意给定一个火腿三明治,总有一刀能把它切开,使得火腿、奶酪和面包片恰好都被分成两等份。

而且更有趣的是,这个定理的名字真的就叫做“火腿三明治定理”(ham sandwich theorem)。它是由数学家亚瑟?斯通(Arthur Stone)和约翰?图基(John Tukey)在 1942 年证明的,在测度论中有着很重要的意义。

火腿三明治定理能够扩展到 n 维的状况:假如在 n 维空间中有 n 个物体,那么总存在一个 n - 1 维的超平面,它能把每个物体都分成“体积”相等的两份。这些物体能够是任何形状,还能够是不连通的(例如面包片),甚至能够是一些奇形怪状的点集,只要满足点集可测就行了。

定理6:四色定理

四色定理的本质正是二维平面的固有属性,即平面内不可出现交叉而没有公共点的两条直线。许多人证明了二维平面内无法构造五个或五个上述两两相连区域,但并不是将其上升到逻辑关系和二维固有属性的层面,以致出现了许多伪反例。不过这些恰恰是对图论严密性的考证和发展推动。计算机证明虽然做了百亿次判断,终究只是在庞大的数量优势上取得成功,这并不符合数学严密的逻辑体系,至今仍有数学爱好者投身其中研究。

定理7:费马大定理

费马大定理,又被称为“费马比较后的定理”,由17世纪法国数学家皮耶·德·费玛提出。

它断言当整数n >2时,关于x, y, z的方程 x^n + y^n = z^n 没有正整数解。

德国佛尔夫斯克曾宣布以10万马克作为奖金奖给在他逝世后一百年内,首要个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。

被提出后,经历多人猜想辩证,历经三百多年的历史,比较终在1995年被英国数学家安德鲁·怀尔斯彻底证明。

定理8:奥尔定理

假如一个总点数至少为3的简单图G满足:G的任意两个点u和v度数之和至少为n,即deg(u)+deg(v)≥n,那么G必然有哈密顿回路。

定理9:托勒密定理

四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。

好了,关于数学比较奇葩的九个定理这个问题学好网琪琪就为大家介绍到这里了,希望对你有所帮助,若还有更多疑问,可以点击右下角咨询哦!想在学习中获得成功,也不是不是不可能的,只要我们能做到有永不言败+勤奋学习+有远大的理想+坚定的信念,坚强的意志,明确地目标,而我想成功也是应该有这个配方研制而成的吧!

编辑:琪琪
温馨提示:免费领取0元试听课!满意在报名!
中小学辅导
查看更多 >
猜你喜欢
查看更多 >