返回上一级
返回页面
返回上一页 菜单 搜索

几何分布的期望和方差

学大教育
来源:学大教育

2020-09-18 01:30:16 | 阅读:200

进入 >

几何分布,P(X=n)=(1?p)^(n?1)p,随着n增大呈等比级数变化,等比级数又称几何级数。这可能和以前几何学中无限分割图形获得的级数有关。

解题过程

期望用E表示,方差用D表示,一般把自变量记做ξ,假如对于结果为ξ的概率为Pξ那么,其期望为Eξ=∑ξ*Pξ,方差为Dξ=∑(ξ-Eξ)^2*Pξ,通过方差的定义,可知:

ξ=∑(ξ-Eξ)^2*Pξ

=∑(ξ^2+Eξ^2-2*ξ*Eξ)*Pξ

=∑(ξ^2*Pξ+Eξ^2*Pξ-2*Pξ*ξ*Eξ)

=∑ξ^2*Pξ+Eξ^2*∑Pξ-2*Eξ*∑Pξ*ξ

由于∑Pξ=1而且Eξ=∑ξ*Pξ

因此Dξ=∑ξ^2*Pξ-Eξ^2

而∑ξ^2*Pξ,表示E(ξ^2)

因此Dξ=E(ξ^2)-Eξ^2

期望:

Eξ=∑{ξ=1,∞}ξ*(1-p)^(ξ-1)*p

Eξ=p+∑{ξ=2,∞}ξ*(1-p)^(ξ-1)*p①

(1-p)*Eξ=∑{ξ=1,∞}ξ*(1-p)^ξ*p

(1-p)*Eξ=∑{ξ=2,∞}(ξ-1)*(1-p)^(ξ-1)*p②

①-②得p*Eξ=p+∑{ξ=2,∞}(1-p)^(ξ-1)*p

因此

Eξ=1+∑{ξ=2,∞}(1-p)^(ξ-1)

=∑{ξ=1,∞}(1-p)^(ξ-1)

=lim{x→∞}[1-(1-p)^x]/p

=1/p

若要计算方差,能够通过公式Dξ=E(ξ^2)-Eξ^2计算,

其中E(ξ^2)的计算过程如下:

E(ξ^2)=∑{ξ=1,∞}ξ^2*(1-p)^(ξ-1)*p

E(ξ^2)-Eξ=∑{ξ=1,∞}ξ^2*(1-p)^(ξ-1)*p-∑{ξ=1,∞}ξ*(1-p)^(ξ-1)*p

E(ξ^2)-Eξ=∑{ξ=1,∞}ξ*(ξ-1)*(1-p)^(ξ-1)*p

E(ξ^2)=1/p+∑{ξ=1,∞}ξ*(ξ-1)*(1-p)^(ξ-1)*p①

(1-p)*E(ξ^2)=(1-p)/p+∑{ξ=1,∞}ξ*(ξ-1)*(1-p)^ξ*p

(1-p)*E(ξ^2)=(1-p)/p+∑{ξ=2,∞}(ξ-1)*(ξ-2)*(1-p)^(ξ-1)*p②

由①得

E(ξ^2)=1/p+∑{ξ=2,∞}ξ*(ξ-1)*(1-p)^(ξ-1)*p③

③-②得

p*E(ξ^2)=1+∑{ξ=2,∞}2*(ξ-1)*(1-p)^(ξ-1)*p

E(ξ^2)=1/p+∑{ξ=2,∞}2*(ξ-1)*(1-p)^(ξ-1)④

(1-p)*E(ξ^2)=(1-p)/p+2*∑{ξ=2,∞}(ξ-1)*(1-p)^ξ

(1-p)*E(ξ^2)=(1-p)/p+2*∑{ξ=3,∞}(ξ-2)*(1-p)^(ξ-1)⑤

由④得

E(ξ^2)=1/p+2*(1-p)+2*∑{ξ=3,∞}(ξ-1)*(1-p)^(ξ-1)⑥

⑥-⑤得

p*E(ξ^2)=1+2*(1-p)+2*∑{ξ=3,∞}(1-p)^(ξ-1).

p*E(ξ^2)=1+2*(1-p)+2*lim{x→∞}(1-p)^2*[1-(1-p)^x]/p.

p*E(ξ^2)=1+2*(1-p)+2*(1-p)^2/p.

E(ξ^2)=1/p+2*(1-p)/p+2*(1-p)^2/p/p

=1/p+2*(1-p)/p/p

=(2-p)/p/p

若求方差,通过公式Dξ=E(ξ^2)-Eξ^2得,

Dξ=(2-p)/p/p-1/p/p

=(1-p)/p^2

几何分布的期望和方差雅雅就先为大家讲解到这里了,希望可以帮到你些,若还有更多疑问,可以点击右下角咨询哦!我相信,每个同学都想向张海迪一样,努力勤奋,为祖国做出贡献。其实,这并不难,在我们学习气馁的时候,不要灰心,记住,风雨过后总是彩虹!在我们学习突飞猛进的时候,不要骄傲,记住,虚心使人进步,骄傲使人落后

编辑:雅雅
温馨提示:免费领取0元试听课!满意在报名!
中小学辅导
查看更多 >
猜你喜欢
查看更多 >