2020-09-18 01:30:16 | 阅读:200
几何分布,P(X=n)=(1?p)^(n?1)p,随着n增大呈等比级数变化,等比级数又称几何级数。这可能和以前几何学中无限分割图形获得的级数有关。
解题过程
期望用E表示,方差用D表示,一般把自变量记做ξ,假如对于结果为ξ的概率为Pξ那么,其期望为Eξ=∑ξ*Pξ,方差为Dξ=∑(ξ-Eξ)^2*Pξ,通过方差的定义,可知:
ξ=∑(ξ-Eξ)^2*Pξ
=∑(ξ^2+Eξ^2-2*ξ*Eξ)*Pξ
=∑(ξ^2*Pξ+Eξ^2*Pξ-2*Pξ*ξ*Eξ)
=∑ξ^2*Pξ+Eξ^2*∑Pξ-2*Eξ*∑Pξ*ξ
由于∑Pξ=1而且Eξ=∑ξ*Pξ
因此Dξ=∑ξ^2*Pξ-Eξ^2
而∑ξ^2*Pξ,表示E(ξ^2)
因此Dξ=E(ξ^2)-Eξ^2
期望:
Eξ=∑{ξ=1,∞}ξ*(1-p)^(ξ-1)*p
Eξ=p+∑{ξ=2,∞}ξ*(1-p)^(ξ-1)*p①
(1-p)*Eξ=∑{ξ=1,∞}ξ*(1-p)^ξ*p
(1-p)*Eξ=∑{ξ=2,∞}(ξ-1)*(1-p)^(ξ-1)*p②
①-②得p*Eξ=p+∑{ξ=2,∞}(1-p)^(ξ-1)*p
因此
Eξ=1+∑{ξ=2,∞}(1-p)^(ξ-1)
=∑{ξ=1,∞}(1-p)^(ξ-1)
=lim{x→∞}[1-(1-p)^x]/p
=1/p
若要计算方差,能够通过公式Dξ=E(ξ^2)-Eξ^2计算,
其中E(ξ^2)的计算过程如下:
E(ξ^2)=∑{ξ=1,∞}ξ^2*(1-p)^(ξ-1)*p
E(ξ^2)-Eξ=∑{ξ=1,∞}ξ^2*(1-p)^(ξ-1)*p-∑{ξ=1,∞}ξ*(1-p)^(ξ-1)*p
E(ξ^2)-Eξ=∑{ξ=1,∞}ξ*(ξ-1)*(1-p)^(ξ-1)*p
E(ξ^2)=1/p+∑{ξ=1,∞}ξ*(ξ-1)*(1-p)^(ξ-1)*p①
(1-p)*E(ξ^2)=(1-p)/p+∑{ξ=1,∞}ξ*(ξ-1)*(1-p)^ξ*p
(1-p)*E(ξ^2)=(1-p)/p+∑{ξ=2,∞}(ξ-1)*(ξ-2)*(1-p)^(ξ-1)*p②
由①得
E(ξ^2)=1/p+∑{ξ=2,∞}ξ*(ξ-1)*(1-p)^(ξ-1)*p③
③-②得
p*E(ξ^2)=1+∑{ξ=2,∞}2*(ξ-1)*(1-p)^(ξ-1)*p
E(ξ^2)=1/p+∑{ξ=2,∞}2*(ξ-1)*(1-p)^(ξ-1)④
(1-p)*E(ξ^2)=(1-p)/p+2*∑{ξ=2,∞}(ξ-1)*(1-p)^ξ
(1-p)*E(ξ^2)=(1-p)/p+2*∑{ξ=3,∞}(ξ-2)*(1-p)^(ξ-1)⑤
由④得
E(ξ^2)=1/p+2*(1-p)+2*∑{ξ=3,∞}(ξ-1)*(1-p)^(ξ-1)⑥
⑥-⑤得
p*E(ξ^2)=1+2*(1-p)+2*∑{ξ=3,∞}(1-p)^(ξ-1).
p*E(ξ^2)=1+2*(1-p)+2*lim{x→∞}(1-p)^2*[1-(1-p)^x]/p.
p*E(ξ^2)=1+2*(1-p)+2*(1-p)^2/p.
E(ξ^2)=1/p+2*(1-p)/p+2*(1-p)^2/p/p
=1/p+2*(1-p)/p/p
=(2-p)/p/p
若求方差,通过公式Dξ=E(ξ^2)-Eξ^2得,
Dξ=(2-p)/p/p-1/p/p
=(1-p)/p^2
几何分布的期望和方差雅雅就先为大家讲解到这里了,希望可以帮到你些,若还有更多疑问,可以点击右下角咨询哦!我相信,每个同学都想向张海迪一样,努力勤奋,为祖国做出贡献。其实,这并不难,在我们学习气馁的时候,不要灰心,记住,风雨过后总是彩虹!在我们学习突飞猛进的时候,不要骄傲,记住,虚心使人进步,骄傲使人落后
学大教育
学大教育
学大教育
学大教育