返回上一级
返回页面
返回上一页 菜单 搜索

数列求和的七种方法

学大教育
来源:学大教育

2020-09-17 22:52:38 | 阅读:368

进入 >

数列求和的七种办法:倒序相加法、分组求和法、错位相减法、裂项相消法、乘公比错项相减(等差×等比)、公式法、迭加法。

1、倒序相加法

倒序相加法假如一个数列{an}满足与首末两项等“距离”的两项的和相等(或等于同一常数),那么求这个数列的前n项和,可用倒序相加法。

2、分组求和法

分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。

3、错位相减法

错位相减法假如一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可用此法来求,如等比数列的前n项和公式便是用此法推导的。

4、裂项相消法

裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项能够相互抵消,从而求得其和。

5、乘公比错项相减(等差×等比)

这种办法是在推导等比数列的前n项和公式时所用的办法,这种办法主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。

6、公式法

对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式开展求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。

7、迭加法

主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,获得一系列式子,把全部的式子加到一起,经过整理,可求出an,从而求出Sn。

好了,关于数列求和的七种方法这个问题学好网要麻就为大家介绍到这里了,希望对你有所帮助,若还有更多疑问,可以点击右下角咨询哦!学习,就要有灵魂,有精神和有热情,它们支持着你的全部!灵魂,认识到自我存在,认识到你该做的是什么;精神,让你不倒下,让你坚强,让你不畏困难强敌;热情,就是时刻提醒你,终点就在不远方,只要努力便会成功的声音,他是灵魂与精神的养料,它是力量的源泉。

编辑:要麻
温馨提示:免费领取0元试听课!满意在报名!
中小学辅导
查看更多 >
猜你喜欢
查看更多 >